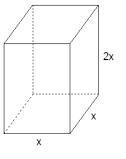
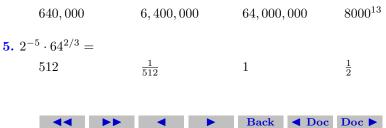
Practice Calculus Readiness Test

Instructions:


- Read each problem carefully. Then work the problem on a separate sheet of paper and click on the box next to the correct choice. If you change your mind, just click on a different choice.
- Use the navigational buttons at the bottom of each page to go to the next or previous page.
- A calculator is not required for any questions on this test.
- This practice test consists of 25 problems. Click on "Begin Quiz", then begin.
- 1. Money in a bank triples every 8 years. If \$100 is deposited today, what will its value be after 32 years?

Back

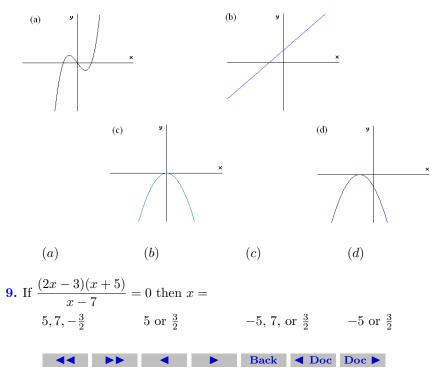
\$8,500 \$8,100 \$1,600 \$400

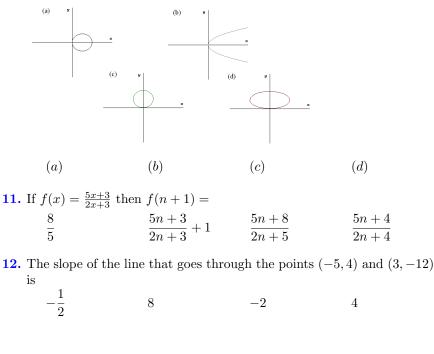

2. The y-coordinate of the point of intersection of the graph of -x + 4y = -50 and x + y = 20 is 6 0 -14 -6

3. The rectangular box shown below has a square base and a closed top. The height is twice the length of one side of the base. Its surface area in terms of x is



4. If 2^{13} is approximately equal to 8000, then, of the following, which best approximates 2^{26} ?


6. If f is a function whose graph is the parabola sketched below then f(x) < 0 whenever


Back

Doc ►

8. A function f is even if f(-x) = f(x) for each x in the domain of f. Of the following, which best represents the graph of an even function?

10. Of the following, which best represents the graph of $x^2 + y^2 - 2y = 0$?

Back

Doc 🕨

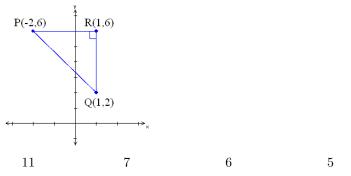
13. Find all solutions to the equation $3x^2 = 4x + 1$.

$$\begin{array}{ll} 4/3, 1/3 & \frac{2+\sqrt{7}}{3}, \frac{2-\sqrt{7}}{3} \\ \\ \frac{4+3\sqrt{2}}{6}, \frac{4-3\sqrt{2}}{6} & \frac{2+\sqrt{2}}{3}, \frac{2-\sqrt{2}}{3} \end{array}$$

14. In a standard coordinate system, the graph of the equation y = -3x+7 is

a line falling to the right a line rising to the right

a horizontal line not a line

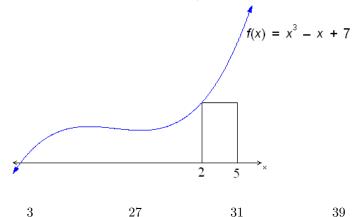

15. The inequality $|x - 4| \le 8$ is equivalent to $-4 \le x \le 12$ $-12 \le x \le 4$ $-12 \le x \le 12$ $x \le 12$

16. The quantity a - b is a factor of how many of the following?

$$a^2 - b^2$$
 $a^2 + b^2$ $a^3 - b^3$ $a^3 + b^3$

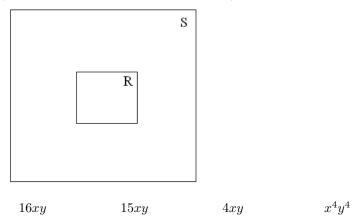
one only two only three only four

17. In the figure shown below, what is the distance between the points P and Q?

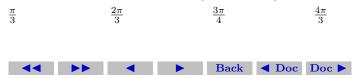


18. The length of a certain rectangle is 6 meters more than twice its width. What is the perimeter of the rectangle if the area of the rectangle is 260 square meters?

54 meters 60 meters	66 meters	72 meters
---------------------	-----------	-----------



19. What is the area of the rectangle shown in the figure below? (Note: The figure is not drawn to scale.)



20. A rectangle R has width x and length y. A rectangle S is formed from R by multiplying each of the sides of the rectangle R by 4 as shown in the figure below. What is the area of the portion of S lying outside R? (Note: The figure is not drawn to scale.)

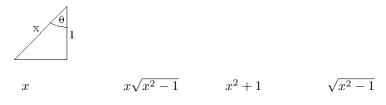
21. What is the radian measure of an angle whose degree measure is 240°?

23. For which values of x in the interval $0 \le x \le 2\pi$ does $(\sin x - 1)(\sin x - 5) = 0$? $\frac{\pi}{2}$ only 1 and 5 π 0 and 2π

24. In the figure below, if $\sin R = \frac{5}{8}$ and r = 2, then what is q?

 $\frac{16}{5}$

 $\frac{5}{4}$


5

Back

 $\frac{5}{16}$

Doc ►

25. In the right triangle shown in the figure below, $\tan \theta =$

- Click on "End Quiz" to have the computer grade your test. Then click on "Correct My Answers" to see which questions you got wrong.
- Click on the green dots to see detailed solutions for each problem.

Solutions to Practice Calculus Readiness Test

Solution to Question 1: In 8 years the value will be $3 \times 100 = 300$. Eight years later (after a total of 16 years), the value will be $3 \times 300 = 900$. Eight years after that (after a total of 24 years) the value will be $3 \times 900 = 2700$. And eight years after that (after a total of 32 years) the value will be $3 \times 2700 = 8100$. Return

Solution to Question 2: Adding the two equations we obtain 5y = -30 or y = -6. Return

Solution to Question 3: The areas of the top and bottom are each $x \times x = x^2$. The area of each of the four sides is $x \times 2x = 2x^2$. So the total surface area is $2(x^2) + 4(2x^2) = 2x^2 + 8x^2 = 10x^2$. Return

Solution to Question 4: $2^{26} = (2^{13})^2 = (8000)^2 = 64,000,000.$

Return

Solution to Question 5: $2^{-5} = \frac{1}{2^5} = \frac{1}{32}$ and $64^{2/3} = (\sqrt[3]{64})^2 = (4)^2 = 16$, so $2^{-5} \cdot 64^{2/3} = \frac{1}{32} \cdot 16 = \frac{16}{32} = \frac{1}{2}$. Return

Solution to Question 6: The graph is below the x axis for 1 < x < 3. Return

Solution to Question 7: $\log_2(x-6) = 6 \Rightarrow 2^6 = x - 6 \Rightarrow x = 2^6 + 6 = 64 + 6 = 70.$ Return

Solution to Question 8: If f(x) = f(-x) for all x, the graph of f must be symmetric with respect to the y axis. The only graph that has this symmetry is (c). Return

Solution to Question 9:
$$\frac{(2x-3)(x+5)}{x-7} = 0 \Rightarrow 2x-3 = 0$$
 or $x+5 = 0 \Rightarrow x = \frac{3}{2}$ or $x = -5$. Return

Image: Second se

Solution to Question 10: Any equation of the form $Ax^2 + Ay^2 + Bx + Cy + D = 0$ is a circle, which narrows the choices to (a) and (c). Completing the square, we see that $x^2 + y^2 - 2y + 1 = 1 \Rightarrow x^2 + (y - 1)^2 = 1$. We know that $(x - h)^2 + (y - k)^2 = r^2$ describes a circle with center (h, k) and radius r. Hence our circle has radius (0, 1) and radius 1, which is choice (c). Return

Solution to Question 11:

$$f(n+1) = \frac{5(n+1)+3}{2(n+1)+3} = \frac{5n+5+3}{2n+2+3} = \frac{5n+8}{2n+5}$$

Return

Solution to Question 12: The slope is

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{-12 - 4}{3 - (-5)} = \frac{-16}{8} = -2$$

 Image: Second second

Return

Solution to Question 13: We use the quadratic formula to solve the equation $3x^2 - 4x - 1 = 0$ with a = 3, b = -4, and c = -1. So

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{4 \pm \sqrt{16 + 12}}{6} = \frac{4 \pm \sqrt{28}}{6} = \frac{4 \pm 2\sqrt{7}}{6} = \frac{2 \pm \sqrt{7}}{3}$$

So the solutions are $\frac{2 \pm \sqrt{7}}{3}$ and $\frac{2 - \sqrt{7}}{3}$. Return

Solution to Question 14: The graph of y = mx + b is a straight line. Since the slope m = -3 is negative, the graph of this line is falling to the right. Return

Solution to Question 15:

$$|x-4| \le 8 \Rightarrow -8 \le x-4 \le 8 \Rightarrow (-8)+4 \le x \le 8+4 \Rightarrow -4 \le x \le 12$$

Return

Solution to Question 16: Recall that $a^2 - b^2 = (a - b)(a + b)$, $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$, and $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ $(a^2 + b^2)$ does not factor). So a + b is a factor of $a^2 - b^2$ and $a^3 + b^3$ only. Return

Solution to Question 17: The distance from P to R is 1 - (-2) = 3, and the distance from R to Q is 7 - 3 = 4. By the Pythagorean Theorem, the distance from P to Q is $\sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$. Return

Solution to Question 18: If we let w be the width of the rectangle, then its length is l = 2w + 6, so the area is $l \times w = (2w + 6)w = 2w^2 + 6w$. Since the area is 260, we have $2w^2 + 6w = 260 \Rightarrow 2w^2 + 6w - 260 = 0 \Rightarrow$ $w^2 + 3w - 130 = 0 \Rightarrow (w + 13)(w - 10) = 0 \Rightarrow w = 10, -13$. Since w must be positive, the width of the rectangle must be 10 meters, so the length is 2w + 6 = 26 meters, and so the perimeter is 2l + 2w = 20 + 52 = 72meters. Return

Back

◀ Doc

Doc ►

29

Solution to Question 19: The width of the rectangle is 5-2=3. The height of the rectangle is $f(2) = 2^3 - 2 + 7 = 8 - 2 + 7 = 13$. So the area is $3 \times 13 = 39$. Return

Solution to Question 20: The area of rectangle S is (4x)(4y) = 16xy. The area of rectangle R is xy. So the area of the portion of S lying outside R is 16xy - xy = 15xy. Return

Solution to Question 21: Since π radians equals 180 degrees, we convert from degrees to radians by multiplying by $\frac{\pi}{180}$:

$$240 \cdot \frac{\pi}{180} = \frac{4\pi}{3}$$

Return

Solution to Question 22: Recall that $\sin(30^\circ) = 1/2$, so $\csc(30^\circ) = \frac{1}{1/2} = 2$ Return

Solution to Question 23:

 $(\sin x - 1)(\sin x - 5) = 0 \Rightarrow \sin x = 1 \text{ or } \sin x = 5$

Since sin x is always between -1 and 1, there are no values of x for which sin x = 5. The only value of x in the interval $0 \le x \le 2\pi$ for which sin x = 1 is $x = \frac{\pi}{2}$. Return

Solution to Question 24:

$$\frac{5}{8} = \sin R = \frac{r}{q} = \frac{2}{q} \Rightarrow 16 = 5q \Rightarrow q = \frac{16}{5}$$

Return

Solution to Question 25: By the Pythagorean Theorem, the third side of the triangle has length $\sqrt{x^2 - 1}$. So $\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sqrt{x^2 - 1}}{1} = \sqrt{x^2 - 1}$. Return